cv.Dataset/Dataset - MATLAB File Help
cv.Dataset/Dataset

Constructor

ds = cv.Dataset(dstype)

Input

HMDB: A Large Human Motion Database

Implements loading dataset: "HMDB: A Large Human Motion Database" Link

Usage:

Benchmark:

Note:

Sports-1M Dataset

Implements loading dataset: "Sports-1M Dataset" Link

Usage:

Adience

Implements loading dataset: "Adience" Link

Usage:

Labeled Faces in the Wild

Implements loading dataset: "Labeled Faces in the Wild" Link

Usage:

Benchmark:

ChaLearn Looking at People

Implements loading dataset: "ChaLearn Looking at People" Link

Usage

Sheffield Kinect Gesture Dataset

Implements loading dataset: "Sheffield Kinect Gesture Dataset" Link

Usage:

HumanEva Dataset

Implements loading dataset: "HumanEva Dataset" Link

Usage:

PARSE Dataset

Implements loading dataset: "PARSE Dataset" Link

Usage:

Affine Covariant Regions Datasets

Implements loading dataset: "Affine Covariant Regions Datasets" Link

Usage:

Robot Data Set

Implements loading dataset: "Robot Data Set, Point Feature Data Set - 2010" Link

Usage:

The Berkeley Segmentation Dataset and Benchmark

Implements loading dataset: "The Berkeley Segmentation Dataset and Benchmark" Link

Usage:

Weizmann Segmentation Evaluation Database

Implements loading dataset: "Weizmann Segmentation Evaluation Database" Link

Usage:

EPFL Multi-View Stereo

Implements loading dataset: "EPFL Multi-View Stereo" Link

Usage:

Stereo - Middlebury Computer Vision

Implements loading dataset: "Stereo - Middlebury Computer Vision" Link

Usage:

ImageNet

Implements loading dataset: "ImageNet" Link

Usage:

Python script to parse meta.mat:

import scipy.io
meta_mat = scipy.io.loadmat("devkit-1.0/data/meta.mat")
 
labels_dic = dict((m[0][1][0], m[0][0][0][0]-1) for m in meta_mat['synsets']
label_names_dic = dict((m[0][1][0], m[0][2][0]) for m in meta_mat['synsets']
 
for label in labels_dic.keys():
    print "{0},{1},{2}".format(label, labels_dic[label], label_names_dic[label])

MNIST

Implements loading dataset: "MNIST" Link

Usage:

SUN Database

Implements loading dataset: "SUN Database, Scene Recognition Benchmark. SUN397" Link

Usage:

Caltech Pedestrian Detection Benchmark

Implements loading dataset: "Caltech Pedestrian Detection Benchmark" Link

Usage:

Note:

KITTI Vision Benchmark

Implements loading dataset: "KITTI Vision Benchmark" Link

Usage:

TUMindoor Dataset

Implements loading dataset: "TUMindoor Dataset" Link

Usage:

The Chars74K Dataset

Implements loading dataset: "The Chars74K Dataset" Link

Usage:

The Street View Text Dataset

Implements loading dataset: "The Street View Text Dataset" Link

Usage:

Benchmark:

VOT 2015 Database

Implements loading dataset: VOT 2015 Link

VOT 2015 dataset comprises 60 short sequences showing various objects in challenging backgrounds. The sequences were chosen from a large pool of sequences including the ALOV dataset, OTB2 dataset, non-tracking datasets, Computer Vision Online, Professor Bob Fisher's Image Database, Videezy, Center for Research in Computer Vision, University of Central Florida, USA, NYU Center for Genomics and Systems Biology, Data Wrangling, Open Access Directory and Learning and Recognition in Vision Group, INRIA, France. The VOT sequence selection protocol was applied to obtain a representative set of challenging sequences.

Usage:

Amsterdam Library of Ordinary Videos for tracking

Implements loading daataset: ALOV++ Link

See also