Constructor
obj = cv.Facemark(ftype)
obj = cv.Facemark(ftype, 'OptionName',optionValue, ...)
Input
- ftype Facemark algorithm, one of:
- LBF regressed local binary features (LBF).
- AAM active appearance model (AAM).
Options for LBF
- ShapeOffset offset for the loaded face landmark points.
default 0.0
- CascadeFace filename of the face detector model. default ''
- Verbose show the training print-out. default true
- NLandmarks number of landmark points. default 68
- InitShapeN multiplier for augment the training data.
default 10
- StagesN number of refinement stages. default 5
- TreeN number of tree in the model for each landmark point
refinement. default 6
- TreeDepth the depth of decision tree, defines the size of
feature. default 5
- BaggingOverlap overlap ratio for training the LBF feature.
default 0.4
- ModelFilename filename where the trained model will be
saved (Base64 encoded). default ''
- SaveModel flag to save the trained model or not.
default true
- Seed seed for shuffling the training data. default 0
- FeatsM default
[500,500,500,300,300,300,200,200,200,100]
- RadiusM
default
[0.3,0.2,0.15,0.12,0.10,0.10,0.08,0.06,0.06,0.05]
- Pupils index of facemark points on pupils of left and
right eye. default
{[36,37,38,39,40,41], [42,43,44,45,46,47]}
- DetectROI default
[-1,-1,-1,-1]
Options for AAM
- ModelFilename filename where the trained model will be
saved (Base64 encoded). default ''
- SaveModel flag to save the trained model or not.
default true
- M default 200
- N default 10
- NIter default 50
- Verbose show the training print-out. default true
- MaxM default 550
- MaxN default 136
- TextureMaxM default 145
- Scales the scales considered to build the model.
default
[1.0,]