cv.RTrees/Priors - MATLAB File Help |
The array of a priori class probabilities, sorted by the class label value.
The parameter can be used to tune the decision tree preferences toward a certain class. For example, if you want to detect some rare anomaly occurrence, the training base will likely contain much more normal cases than anomalies, so a very good classification performance will be achieved just by considering every case as normal. To avoid this, the priors can be specified, where the anomaly probability is artificially increased (up to 0.5 or even greater), so the weight of the misclassified anomalies becomes much bigger, and the tree is adjusted properly.
You can also think about this parameter as weights of prediction categories which determine relative weights that you give to misclassification. That is, if the weight of the first category is 1 and the weight of the second category is 10, then each mistake in predicting the second category is equivalent to making 10 mistakes in predicting the first category. Default value is empty matrix.
Constant | false |
Dependent | true |
Sealed | false |
Transient | false |
GetAccess | public |
SetAccess | public |
GetObservable | false |
SetObservable | false |