cv.StructuredEdgeDetection/StructuredEdgeDetection - MATLAB File Help
cv.StructuredEdgeDetection/StructuredEdgeDetection

The only constructor

obj = cv.StructuredEdgeDetection(model)
obj = cv.StructuredEdgeDetection(model, howToGetFeatures)

Input

Example

The following is an example of a custom feature extractor MATLAB function:

% This function extracts feature channels from src. The
% StructureEdgeDetection uses this feature space to detect
% edges.
function features = myRFFeatureGetter(src, opts)
    % src: source image to extract features
    % features: output n-channel floating-point feature matrix
    % opts: struct of options
    gnrmRad = opts.normRad;    % gradientNormalizationRadius
    gsmthRad = opts.grdSmooth; % gradientSmoothingRadius
    shrink = opts.shrink;      % shrinkNumber
    outNum = opts.nChns;       % numberOfOutputChannels
    gradNum = opts.nOrients;   % numberOfGradientOrientations

    nsize = [size(src,1) size(src,2)] ./ shrink;
    features = zeros([nsize outNum], 'single');
    % ... here your feature extraction code
end

TODO: Custom extractor is not internally used in the current cv.StructuredEdgeDetection implementation. See this tutorial for more information about training your own structured forest (it uses an external MATLAB toolbox for the training part).

See also