Detection of ChArUco Corners Demo
The example shows how to do pose estimation using a ChArUco board.
Sources:
Contents
Parameters
% options vidFile = ''; % Use video file instead of camera as input squaresX = 5; % Number of squares in X direction squaresY = 7; % Number of squares in Y direction squareLength = 60; % Square side length (in pixels) markerLength = 30; % Marker side length (in pixels) dictionaryId = '6x6_250'; % Dictionary id showRejected = false; % Show rejected candidates too refindStrategy = true; % Apply refined strategy estimatePose = true; % Wheather to estimate pose or not if estimatePose % calibrated camera parameters load camera_parameters.mat -mat camMatrix distCoeffs %camMatrix = eye(3); %distCoeffs = zeros(1,5); else camMatrix = []; distCoeffs = []; end % marker detector parameters detectorParams = struct(); if false %detectorParams.nMarkers = 1024; detectorParams.adaptiveThreshWinSizeMin = 3; detectorParams.adaptiveThreshWinSizeMax = 23; detectorParams.adaptiveThreshWinSizeStep = 10; detectorParams.adaptiveThreshConstant = 7; detectorParams.minMarkerPerimeterRate = 0.03; detectorParams.maxMarkerPerimeterRate = 4.0; detectorParams.polygonalApproxAccuracyRate = 0.05; detectorParams.minCornerDistanceRate = 0.05; detectorParams.minDistanceToBorder = 3; detectorParams.minMarkerDistanceRate = 0.05; detectorParams.cornerRefinementMethod = 'None'; detectorParams.cornerRefinementWinSize = 5; detectorParams.cornerRefinementMaxIterations = 30; detectorParams.cornerRefinementMinAccuracy = 0.1; detectorParams.markerBorderBits = 1; detectorParams.perspectiveRemovePixelPerCell = 8; detectorParams.perspectiveRemoveIgnoredMarginPerCell = 0.13; detectorParams.maxErroneousBitsInBorderRate = 0.04; detectorParams.minOtsuStdDev = 5.0; detectorParams.errorCorrectionRate = 0.6; end % create board dictionary = {'Predefined', dictionaryId}; board = {squaresX, squaresY, squareLength, markerLength, dictionary}; axisLength = 0.5 * min(squaresX, squaresY) * squareLength;
Input source
if ~isempty(vidFile) && exist(vidFile, 'file') == 2 vid = cv.VideoCapture(vidFile); waitTime = 1; % 1 sec else vid = createVideoCapture([], 'charuco'); waitTime = 0.01; % 10 msec end if ~vid.isOpened(), error('failed to initialize VideoCapture'); end
Main loop
totalTime = 0; totalIterations = 0; hImg = []; while true % grab frame img = vid.read(); if isempty(img), break; end tId = tic(); % detect markers [markerCorners, markerIds, rejectedMarkers] = cv.detectMarkers(... img, dictionary, 'DetectorParameters',detectorParams); % refined strategy to detect more markers if refindStrategy [markerCorners, markerIds, rejectedMarkers] = ... cv.refineDetectedMarkers(img, ['CharucoBoard', board], ... markerCorners, markerIds, rejectedMarkers, ... 'CameraMatrix',camMatrix, 'DistCoeffs',distCoeffs); end % interpolate charuco corners interpolatedCorners = 0; if ~isempty(markerIds) [charucoCorners, charucoIds, interpolatedCorners] = ... cv.interpolateCornersCharuco(markerCorners, markerIds, ... img, board, 'CameraMatrix',camMatrix, 'DistCoeffs',distCoeffs); end % estimate charuco board pose validPose = false; if estimatePose && ~isempty(charucoIds) [rvec, tvec, validPose] = cv.estimatePoseCharucoBoard(... charucoCorners, charucoIds, board, camMatrix, distCoeffs); end % tic/toc currentTime = toc(tId); totalTime = totalTime + currentTime; totalIterations = totalIterations + 1; if mod(totalIterations, 30) == 0 fprintf('Detection time = %f ms (Mean = %f ms)\n', ... 1000*currentTime, 1000*totalTime/totalIterations); end % draw results if ~isempty(markerIds) img = cv.drawDetectedMarkers(img, markerCorners); % 'IDs',markerIds end if showRejected && ~isempty(rejectedMarkers) img = cv.drawDetectedMarkers(img, rejectedMarkers, ... 'BorderColor',[255 0 100]); end if interpolatedCorners > 0 img = cv.drawDetectedCornersCharuco(img, charucoCorners, ... 'IDs',charucoIds, 'CornerColor',[255 0 0]); end if estimatePose && validPose img = cv.drawAxis(img, camMatrix, distCoeffs, rvec, tvec, axisLength); end if isempty(hImg) hImg = imshow(img); elseif ishghandle(hImg) set(hImg, 'CData',img); else break; end drawnow; pause(waitTime); end vid.release();
Detection time = 95.822692 ms (Mean = 95.850018 ms) Detection time = 91.430028 ms (Mean = 94.927147 ms)