mexopencv  3.4.1
MEX interface for OpenCV library
Variables
anonymous_namespace{LogisticRegression_.cpp} Namespace Reference

Variables

int last_id = 0
 Last object id to allocate. More...
 
map< int, Ptr< LogisticRegression > > obj_
 Object container. More...
 
const ConstMap< string, int > TrainingMethodType
 Option values for Training methods. More...
 
const ConstMap< int, stringInvTrainingMethodType
 Option values for Inverse Training methods. More...
 
const ConstMap< string, int > RegularizationType
 Option values for Regularization kinds. More...
 
const ConstMap< int, stringInvRegularizationType
 Option values for Inverse Regularization kinds. More...
 

Variable Documentation

◆ InvRegularizationType

const ConstMap<int,string> anonymous_namespace{LogisticRegression_.cpp}::InvRegularizationType
Initial value:

Option values for Inverse Regularization kinds.

Definition at line 39 of file LogisticRegression_.cpp.

◆ InvTrainingMethodType

const ConstMap<int,string> anonymous_namespace{LogisticRegression_.cpp}::InvTrainingMethodType
Initial value:
std::map wrapper with one-line initialization and lookup method.
Definition: MxArray.hpp:927

Option values for Inverse Training methods.

Definition at line 28 of file LogisticRegression_.cpp.

◆ last_id

int anonymous_namespace{LogisticRegression_.cpp}::last_id = 0

Last object id to allocate.

Definition at line 18 of file LogisticRegression_.cpp.

◆ obj_

map<int,Ptr<LogisticRegression> > anonymous_namespace{LogisticRegression_.cpp}::obj_

Object container.

Definition at line 20 of file LogisticRegression_.cpp.

◆ RegularizationType

const ConstMap<string,int> anonymous_namespace{LogisticRegression_.cpp}::RegularizationType
Initial value:

Option values for Regularization kinds.

Definition at line 33 of file LogisticRegression_.cpp.

◆ TrainingMethodType

const ConstMap<string,int> anonymous_namespace{LogisticRegression_.cpp}::TrainingMethodType
Initial value:
std::map wrapper with one-line initialization and lookup method.
Definition: MxArray.hpp:927

Option values for Training methods.

Definition at line 23 of file LogisticRegression_.cpp.