cv.NormalBayesClassifier - MATLAB File Help Go to online doc for cv.NormalBayesClassifier
cv.NormalBayesClassifier

Bayes classifier for normally distributed data

Normal Bayes Classifier

This simple classification model assumes that feature vectors from each class are normally distributed (though, not necessarily independently distributed). So, the whole data distribution function is assumed to be a Gaussian mixture, one component per class. Using the training data the algorithm estimates mean vectors and covariance matrices for every class, and then it uses them for prediction.

References

[Fukunaga90]:

K. Fukunaga. "Introduction to Statistical Pattern Recognition", 2e. New York: Academic Press, 1990.

See also
Class Details
Superclasses handle
Sealed false
Construct on load false
Constructor Summary
NormalBayesClassifier Creates/trains a new Bayes classifier model 
Property Summary
id Object ID 
Method Summary
  addlistener Add listener for event. 
  calcError Computes error on the training or test dataset 
  clear Clears the algorithm state 
  delete Destructor 
  empty Returns true if the algorithm is empty 
  eq == (EQ) Test handle equality. 
  findobj Find objects matching specified conditions. 
  findprop Find property of MATLAB handle object. 
  ge >= (GE) Greater than or equal relation for handles. 
  getDefaultName Returns the algorithm string identifier 
  getVarCount Returns the number of variables in training samples 
  gt > (GT) Greater than relation for handles. 
  isClassifier Returns true if the model is a classifier 
  isTrained Returns true if the model is trained 
Sealed   isvalid Test handle validity. 
  le <= (LE) Less than or equal relation for handles. 
  listener Add listener for event without binding the listener to the source object. 
  load Loads algorithm from a file or a string 
  lt < (LT) Less than relation for handles. 
  ne ~= (NE) Not equal relation for handles. 
  notify Notify listeners of event. 
  predict Predicts responses for input samples 
  predictProb Predicts the response for sample(s) 
  save Saves the algorithm parameters to a file or a string 
  train Trains the statistical model 
Event Summary
ObjectBeingDestroyed Notifies listeners that a particular object has been destroyed.