cv.PCTSignatures - MATLAB File Help Go to online doc for cv.PCTSignatures
cv.PCTSignatures

Class implementing PCT (Position-Color-Texture) signature extraction

As described in [KrulisLS16].

The algorithm is divided to a feature sampler and a clusterizer. Feature sampler produces samples at given set of coordinates. Clusterizer then produces clusters of these samples using k-means algorithm. Resulting set of clusters is the signature of the input image.

A signature is an array of 8-dimensional points. Used dimensions are: weight, x/y position; Lab color L/a/b, contrast, entropy.

References

[KrulisLS16]:

Martin Krulis, Jakub Lokoc, and Tomas Skopal. "Efficient extraction of clustering-based feature signatures using GPU architectures". Multimedia Tools Appl., 75(13):8071-8103, 2016.

[BeecksUS10]:

Christian Beecks, Merih Seran Uysal, and Thomas Seidl. "Signature quadratic form distance". In CIVR, pages 438-445. ACM, 2010.

See also
Class Details
Superclasses handle
Sealed false
Construct on load false
Constructor Summary
PCTSignatures Creates PCTSignatures algorithm 
Property Summary
ClusterMinSize This parameter multiplied by the index of iteration gives lower 
DistanceFunction Distance function selector used for measuring distance between two 
DropThreshold Remove centroids in k-means whose weight is lesser or equal to given 
GrayscaleBits Color resolution of the greyscale bitmap represented in allocated 
IterationCount Number of iterations of the k-means clustering. We use fixed number 
JoiningDistance Threshold euclidean distance between two centroids. If two cluster 
MaxClustersCount Maximal number of generated clusters. If the number is exceeded, the 
WeightA Weight (multiplicative constant) that linearly stretch individual 
WeightB Weight (multiplicative constant) that linearly stretch individual 
WeightContrast Weight (multiplicative constant) that linearly stretch individual 
WeightEntropy Weight (multiplicative constant) that linearly stretch individual 
WeightL Weight (multiplicative constant) that linearly stretch individual 
WeightX Weight (multiplicative constant) that linearly stretch individual 
WeightY Weight (multiplicative constant) that linearly stretch individual 
WindowRadius Size of the texture sampling window used to compute contrast and 
id Object ID 
Method Summary
  addlistener Add listener for event. 
  computeSignature Computes signature of given image 
  computeSignatures Computes signatures for multiple images in parallel 
  delete Destructor 
Static   drawSignature Draws signature in the source image and outputs the result 
  eq == (EQ) Test handle equality. 
  findobj Find objects matching specified conditions. 
  findprop Find property of MATLAB handle object. 
  ge >= (GE) Greater than or equal relation for handles. 
Static   generateInitPoints Generates initial sampling points according to selected point distribution 
  getInitSeedCount Number of initial seeds for the k-means algorithm 
  getInitSeedIndexes Initial seeds for the k-means algorithm 
  getSampleCount Number of initial samples taken from the image 
  getSamplingPoints Initial samples taken from the image 
  gt > (GT) Greater than relation for handles. 
Sealed   isvalid Test handle validity. 
  le <= (LE) Less than or equal relation for handles. 
  listener Add listener for event without binding the listener to the source object. 
  lt < (LT) Less than relation for handles. 
  ne ~= (NE) Not equal relation for handles. 
  notify Notify listeners of event. 
  setInitSeedIndexes Sets initial seed indexes for the k-means algorithm 
  setSamplingPoints Sets sampling points used to sample the input image 
  setTranslation SETRANSLATION Sets translation of the individual axis of the feature space 
  setTranslations SETRANSLATIONS Sets translations of the individual axes of the feature space 
  setWeight Sets weight (multiplicative constant) that linearly stretch individual axis of the feature space 
  setWeights Sets weights (multiplicative constants) that linearly stretch individual axes of the feature space 
Event Summary
ObjectBeingDestroyed Notifies listeners that a particular object has been destroyed.