cv.SuperpixelLSC - MATLAB File Help Go to online doc for cv.SuperpixelLSC
cv.SuperpixelLSC

Class implementing the LSC (Linear Spectral Clustering) superpixels algorithm

As described in [LiCVPR2015LSC].

LSC (Linear Spectral Clustering) produces compact and uniform superpixels with low computational costs. Basically, a normalized cuts formulation of the superpixel segmentation is adopted based on a similarity metric that measures the color similarity and space proximity between image pixels. LSC is of linear computational complexity and high memory efficiency and is able to preserve global properties of images.

References

[LiCVPR2015LSC]:

Zhengqin Li and Jiansheng Chen. "Superpixel Segmentation using Linear Spectral Clustering". IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015.

See also
Class Details
Superclasses handle
Sealed false
Construct on load false
Constructor Summary
SuperpixelLSC Class implementing the LSC (Linear Spectral Clustering) superpixels 
Property Summary
id Object ID 
Method Summary
  addlistener Add listener for event. 
  clear Clears the algorithm state 
  delete Destructor 
  empty Checks if detector object is empty 
  enforceLabelConnectivity Enforce label connectivity 
  eq == (EQ) Test handle equality. 
  findobj Find objects matching specified conditions. 
  findprop Find property of MATLAB handle object. 
  ge >= (GE) Greater than or equal relation for handles. 
  getDefaultName Returns the algorithm string identifier 
  getLabelContourMask Returns the mask of the superpixel segmentation stored in object 
  getLabels Returns the segmentation labeling of the image 
  getNumberOfSuperpixels Calculates the actual amount of superpixels on a given segmentation computed and stored in object 
  gt > (GT) Greater than relation for handles. 
Sealed   isvalid Test handle validity. 
  iterate Calculates the superpixel segmentation on a given image with the initialized parameters in the object 
  le <= (LE) Less than or equal relation for handles. 
  listener Add listener for event without binding the listener to the source object. 
  load Loads algorithm from a file or a string 
  lt < (LT) Less than relation for handles. 
  ne ~= (NE) Not equal relation for handles. 
  notify Notify listeners of event. 
  save Saves the algorithm parameters to a file 
Event Summary
ObjectBeingDestroyed Notifies listeners that a particular object has been destroyed.