cv.HOGDescriptor - MATLAB File Help Go to online doc for cv.HOGDescriptor
cv.HOGDescriptor

Histogram of Oriented Gaussian (HOG) descriptor and object detector

The HOG descriptor algorithm introduced by [Dalal2005].

Useful links:

Example

The basic usage is the following for computing HOG descriptors:

hog = cv.HOGDescriptor();
descriptors = hog.compute(im);

This computes descriptors in a "dense" setting; Each row is a feature vector computed from a window of size WinSize slided across the input image gradient. Each vector element is a histogram of gradient orientations (quantized into NBins directions). The histogram is collected within a "cell" of pixels of size CellSize, and locally normalized (see HistogramNormType and L2HysThreshold) over larger spatial "block" regions of size BlockSize overlapped according to BlockStride. See cv.HOGDescriptor.getDescriptorSize.

If you need to compute descriptors for a set of certain "sparse" keypoints (for example SIFT or SURF keypoints), use the Locations option of the compute method:

keypoints = cv.FAST(im);
descriptors = hog.compute(im, 'Locations', {keypoints.pt});

The next step in object recognition using HOG descriptors is to feed the descriptors computed from positive and negative images into a linear SVM classifier trained to classify whether a window is an object or not. This trained SVM model is represented by a set of coefficients for each element in the feature vector. This vector is assigned to the cv.HOGDescriptor.SvmDetector property.

Alternatively, you can use the default built-in people detector which is accessible by name as:

% detect and localize upright people in images
hog.SVMDetector = 'DefaultPeopleDetector';
boxes = hog.detectMultiScale(im);

In this case, there is no need to train an SVM model.

Either way, you simply call the detect methods which use the saved coefficients on the input feature-vector to compute a weighted sum. If the sum is greater than a user-specified threshold HitThreshold, then it is classified an object (a pedestrian in the case of the builtin detectors).

The cv.HOGDescriptor.detectMultiScale method detects at multiple scales (see NLevels and Scale) and directly returns the bounding boxes. The cv.HOGDescriptor.detect method returns a list of top-left corner points, where the detected object size is the same as the detector's window size.

References

[Dalal2005]:

Navneet Dalal and Bill Triggs. "Histogram of oriented gradients for human detection". CVPR 2005. Link.

See also
Class Details
Superclasses handle
Sealed false
Construct on load false
Constructor Summary
HOGDescriptor Create a new or load an existing HOG descriptor and detector 
Property Summary
BlockSize Block size 
BlockStride Block stride of a grid 
CellSize Cell size of a grid 
DerivAperture Derivative of aperture 
GammaCorrection Gamma correction 
HistogramNormType Histogram normalization method 
L2HysThreshold L2 Hysterisis threshold 
NBins Number of bins 
NLevels Number of levels 
SignedGradient Signed gradient 
SvmDetector Coefficients for the linear SVM classifier. 
WinSigma Window sigma 
WinSize Window size 
id Object ID 
Method Summary
  addlistener Add listener for event. 
  checkDetectorSize Checks the size of the detector is valid 
  compute Returns HOG block descriptors computed for the whole image 
  computeGradient Computes gradients and quantized gradient orientations 
  delete Destructor 
  detect Performs object detection without a multi-scale window 
  detectMultiScale Performs object detection with a multi-scale window 
  detectMultiScaleROI Evaluate specified ROI and return confidence value for each location in multiple scales 
  detectROI Evaluate specified ROI and return confidence value for each location 
  eq == (EQ) Test handle equality. 
  findobj Find objects matching specified conditions. 
  findprop Find property of MATLAB handle object. 
  ge >= (GE) Greater than or equal relation for handles. 
  getDescriptorSize Returns the number of coefficients required for the classification 
  getWinSigma Get window sigma 
  groupRectangles Groups the object candidate rectangles 
  gt > (GT) Greater than relation for handles. 
Sealed   isvalid Test handle validity. 
  le <= (LE) Less than or equal relation for handles. 
  listener Add listener for event without binding the listener to the source object. 
  load Loads a HOG descriptor config from a file or a string 
  lt < (LT) Less than relation for handles. 
  ne ~= (NE) Not equal relation for handles. 
  notify Notify listeners of event. 
  readALTModel Read model from SVMlight format 
  save Saves a HOG descriptor config to a file 
Event Summary
ObjectBeingDestroyed Notifies listeners that a particular object has been destroyed.